Nicolaus Copernicus University in Torun - Central Authentication Service
Strona główna

Chemical physics and the interaction of nuclear radiation with matter

General data

Course ID: 0600-S2-PP/ChSO-FCh
Erasmus code / ISCED: 13.3 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0531) Chemistry The ISCED (International Standard Classification of Education) code has been designed by UNESCO.
Course title: Chemical physics and the interaction of nuclear radiation with matter
Name in Polish: Fizyka chemiczna i oddziaływanie promieniowania jądrowego z materią
Organizational unit: Faculty of Chemistry
Course groups: (in Polish) Studia stacjonarne II stopnia - przedmioty do wyboru
ECTS credit allocation (and other scores): 0 OR 6.00 (depends on study program) Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.

view allocation of credits
Language: Polish
Prerequisites:

The student should know the basic definitions and theorems concerning differential calculus, indefinite and definite integral.

Additionally, he should be able to use elements of differential calculus and calculate indefinite, marked and incorrect integrals of selected types.


Total student workload:

Classes requiring the direct participation of the teacher - lecture 30 hours, exercises 30 hours, consultations 15 h, 75 hours in total

Own work: preparation for classes and tests - 40 h

own: literature studies, supplementary course content - 20 h

Preparation for the exam - 15h

Total student workload: 150 h

150h / 25h / ECTS = 6 ECTS


Learning outcomes - knowledge:

The student knows:

- basic concepts of classical mechanics (Newton's equations, Lagrange's equations, canonical Hamilton's, constraints, degrees of freedom, generalized coordinates);

- basics of non-relativistic quantum mechanics;

- postulates of quantum mechanics;

- variation method;

- basic concepts of statistical thermodynamics (microstate, sum of states, entropy);

- the way of expressing thermodynamic functions by means of the sum of states;

- basics of relativistic quantum mechanics;

- Lorentz transformation;

- special theory of relativity;

- equations for mass, momentum and energy gain;

- Dirac equation;

- systems of energy levels in the non-relativistic theory

and relativistic for a single- and multi-electron atom;

- the basics of angular momentum theory;

- characteristic X-rays;

- selection rules for electron transitions;

- nuclear reactions;

- natural and artificial radioactivity;

- basic types of radiation;

- X-rays and gamma rays;

(K_W01, K_W02, K_W06, K_W08)


Learning outcomes - skills:

The student is able to:

- apply the Newton and Lagrange equations to the description of motion;

- apply the special theory of relativity;

- find the expression for a given thermodynamic function by means of the sum of the system states;

- find the atomic terms approximately the coupling LS and j-j;

- use selection rules for electron transitions;

- recognize and define natural and artificial radioactivity; basic types of radiation; X-rays and gamma rays;

(K_U01, K_U02)


Learning outcomes - social competencies:

Student:

- reliably assesses own knowledge in the field of chemical physics,

- is encouraged to further deepen this knowledge on their own.

(K_K01, K_K02)


Teaching methods:

informative lecture (conventional)

Expository teaching methods:

- informative (conventional) lecture

Short description:

The main aim of the lecture is to familiarize students with the following topics:

I. Elements of Theoretical Mechanics.

II. Elements of Statistical Thermodynamics.

III. Fundamentals of non-relativistic and relativistic quantum mechanics.

IV. Theoretical foundations of atomic spectroscopy.

V. Interaction of nuclear radiation with matter.

Full description:

I. Elements of classical mechanics

1. Newton's equations.

2. Kinetic energy, potential field and potential energy.

3. Lagrange's function and Lagrange's equations.

4. Bonds. Degrees of freedom.

5. Generalized coordinates.

6. Lagrange's equations in generalized coordinates.

7. Hamilton's canonical equations.

II. Elements of Statistical Thermodynamics

1. Microstate and macrostate of the system.

2. Sum of states - division function.

3. Relationship of the sum of states with the internal energy of the system.

4. Entropy and thermodynamic probability.

5. Expression of thermodynamic functions by means of a sum of states.

6. Examples of expressions for the state sum.

III. Fundamentals of non-relativistic and relativistic quantum mechanics

1. Postulates of quantum mechanics.

2. Variation method.

3. Basics of relativistic quantum mechanics.

4. Lorentz transformation.

5. Special theory of relativity.

6. Dirac equation.

7. Systems of energy levels in the non-relativistic theory

and relativistic for a single- and multi-electrode atom.

IV. Theoretical foundations of atomic spectroscopy

1. Angular momentum couplings: limit couplings LS and j-j.

2. Selection rules for electron transitions.

V. Interaction of nuclear radiation with matter

1. Nuclear reactions.

2. Natural and artificial radioactivity.

3. Basic types of radiation; X-rays and gamma rays.

Bibliography:

1. Kazimierz Gumiński i Piotr Petelenz, "Elementy chemii teoretycznej", PWN Warszawa 1989;

2. Lucjan Sobczyk, Adolf Kisza, "Chemia fizyczna dla przyrodników", PWN Warszawa 1975;

3. Haken Hermann, Wolf Hans, "Atomy i kwanty - Wprowadzenie do współczesnej spektroskopii atomowej", PWN Warszawa 2002;

4. Włodzimierz Kołos, "Chemia kwantowa", PWN Warszawa 1978;

5. Lucjan Piela, "Idee chemii kwantowej", PWN Warszawa 2004;

6. Alojzy Gołębiewski, "Elementy mechaniki i chemii kwantowej", PWN Warszawa 1982.

7. J. Sobkowski, M. Jelińska-Kazimierczuk, Chemia jądrowa, Wyd. Adamantan 2006.

8. W. Szymański, Chemia jądrowa, PWN (1991).

Assessment methods and assessment criteria:

Lecture: written exam, standard grading scale

(K_W01, K_W02, K_W06, K_W08, K_U01, K_U02, K_K01)

Classes: written test in the form of a colloquium

(K_W01, K_W02, K_W06, K_W08, K_U01, K_U02, K_K01, K_K02

Classes in period "Winter semester 2024/25" (future)

Time span: 2024-10-01 - 2025-02-23
Selected timetable range:
Navigate to timetable
Type of class:
Lecture, 30 hours more information
Tutorial, 30 hours more information
Coordinators: Katarzyna Słabkowska
Group instructors: (unknown)
Students list: (inaccessible to you)
Examination: Course - Examination
Lecture - Examination
Tutorial - Grading
Course descriptions are protected by copyright.
Copyright by Nicolaus Copernicus University in Torun.
ul. Jurija Gagarina 11, 87-100 Toruń tel: +48 56 611-40-10 https://usosweb.umk.pl/ contact accessibility statement mapa serwisu USOSweb 7.0.3.0-2 (2024-04-26)