Uniwersytet Mikołaja Kopernika w Toruniu - Centralny punkt logowaniaNie jesteś zalogowany | zaloguj się
katalog przedmiotów - pomoc

Pracownia symulacji komputerowych

Informacje ogólne

Kod przedmiotu: 1000-M2PSK Kod Erasmus / ISCED: (brak danych) / (0541) Matematyka
Nazwa przedmiotu: Pracownia symulacji komputerowych
Jednostka: Wydział Matematyki i Informatyki
Grupy:
Punkty ECTS i inne: 1.00
Język prowadzenia: polski
Wymagania wstępne:

Studenci uczęszczający na te laboratoria powinni ukończyć wcześniej kurs Matematyki komputerowej (1000-M1MAK).

Rodzaj przedmiotu:

przedmiot pomocniczy

Całkowity nakład pracy studenta:

10 godz. - laboratorium;

10 godz. - praca własna - bieżące przygotowanie do zajęć, studiowanie literatury;

5 godz. - praca własna - przygotowanie do zaliczenia.


Razem: 25 godz.

1 pkt. ECTS


Efekty uczenia się - wiedza:

Po ukończeniu kursu 1000-M2PSKz student osiąga następujące efekty (kody odnoszą się do efektów dla studiów 2 stopnia na kierunku matematyka):


W1: zna i rozumie pojęcie i własności potoku indukowanego przez równanie różniczkowe zwyczajne (K_W02);

W2: zna klasyfikację portretów fazowych równań różniczkowych w otoczeniu położenia równowagi – twierdzenie Hartmana-Grobmana (K_W02);

W3: zna warunki wystarczające istnienia i bifurkacji rozwiązań okresowych równań różniczkowych zwyczajnych – twierdzenie o bifurkacji Hopfa (K_W03);

W4: rozumie pojęcie stabilności oraz asymptotycznej stabilności Lapunova rozwiązań równań różniczkowych zwyczajnych (K_W03);

W5: rozumie pojęcie cyklu granicznego oraz zna warunki wystarczające na jego istnienie - twierdzenie Poincaré-Bendixsona (K_W03).

Efekty uczenia się - umiejętności:

Po ukończeniu kursu 1000-M2PSKz student osiąga następujące efekty (kody odnoszą się do efektów dla studiów 2 stopnia na kierunku matematyka):


U1: analizuje i klasyfikuje portrety fazowe równań różniczkowych zwyczajnych, w szczególności opisuje strukturę jakościową portretów fazowych równań rózniczkowych zwyczajnych w otoczeniu położenia równowagi (K_U09);

U2: orzeka w sposób poprawny istnienie (nieistnienie) i bifurkację rozwiązań okresowych równań różniczkowych (K_U09);

U3: bada stabilność rozwiązań równań różniczkowych zwyczajnych (K_U09);

U4: potrafi szacować liczbę obszarów eliptycznych i hiperbolicznych w otoczeniu izolowanego położenia równowagi planarnego równania różniczkowego (K_U09);

Efekty uczenia się - kompetencje społeczne:

Po ukończeniu kursu 1000-M2PSKz student osiąga następujące efekty (kody odnoszą się do efektów dla studiów 2 stopnia na kierunku matematyka):


K1: rozumie w właściwy sposób sformułowania pytań i problemów, poprawnie posługuje się terminologią fachową (K_K01);

K2: analizuje problem w poprawny sposób posługując się zasadami logiki (K_K01);

K3: przekazuje zdobytą wiedzę w zrozumiały sposób (K_K04).

Metody dydaktyczne eksponujące:

- pokaz

Metody dydaktyczne podające:

- opowiadanie
- tekst programowany

Metody dydaktyczne poszukujące:

- ćwiczeniowa
- laboratoryjna

Skrócony opis:

Równania różniczkowe zwyczajne modelują wiele zjawisk w biologii, chemii, mechanice oraz w szczególności mechanice nieba. Przedmiot służy badaniu tych równań metodami jakościowej teorii równań różniczkowych zwyczajnych pozwalając lepiej zrozumieć modelowane zagadnienia.

Przedmiot ten składa się z dwóch części. W pierwszej części przypomnimy podstawowe polecenia programu Maple wykorzystywane do rozwiązywania równań różniczkowych zwyczajnych. W części drugiej zastosujemy elementarne metody jakościowej teorii równań różniczkowych zwyczajnych do badania modeli matematycznych przeprowadzając obliczenia przy pomocy programu Maple.

Studenci uczęszczający na ten przedmiot powinni ukończyć wcześniej kurs Matematyki komputerowej (1000-M1MAK).

Pełny opis:

Pełny opis:

1 Podstawowe polecenia programu Maple wykorzystywane do rozwiązywania równań różniczkowych zwyczajnych

1.1 Rozwiązywanie równań różniczkowych zwyczajnych oraz zagadnień początkowych, w szczególności liniowych równań różniczkowych wyższych rzędów oraz układów równań liniowych

1.2 Rysowanie pól kierunków oraz rozszerzonych portretów fazowych

2 Zastosowanie elementarnych metod jakościowej teorii równań różniczkowych zwyczajnych do badania modeli matematycznych zjawisk przyrody

2.1 Zastosowanie twierdzenia Hartmana-Grobmana do klasyfikacji portretów fazowych równań różniczkowych w otoczeniu położenia równowagi

2.2 Warunki wystarczające istnienia i bifurkacji rozwiązań okresowych równań różniczkowych zwyczajnych – twierdzenie o bifurkacji Hopfa

2.3 Pojęcie stabilności oraz asymptotycznej stabilności Lapunova rozwiązań równań różniczkowych zwyczajnych

2.4 Cykle graniczne oraz zastosowanie twierdzenia Poincaré-Bendixsona

Literatura:

R. H. Enns, G. C. McGuire, Nonlinear Physics with Maple for Scientists and Engineers, Birkhauser, 2013.

B. R. Hunt, L. J. Lardy, R. L. Lipsman, J. E. Osborn, J. Rosenberg, Differential Equations with Maple, John Wiley and Sons, Inc., 2009.

D. W. Jordan i P. Smith, Nonlinear ordinary differential equations. Problems and solutions, Oxford University Press, 2007.

Metody i kryteria oceniania:

Kolokwium: W1, W2, W3, W4, W5, U1, U2, U3, U4, K1, K2, K3.

Przedmiot obejmuje 10 godzin laboratoriów. Zaliczenie przedmiotu studenci uzyskują na podstawie otrzymania pozytywnej oceny ze sprawdzianu obejmującego zadania rachunkowe wykonane przy pomocy programu Maple.

Zajęcia w cyklu "Semestr zimowy 2017/18" (zakończony)

Okres: 2017-10-01 - 2018-02-25
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Laboratorium, 10 godzin, 16 miejsc więcej informacji
Koordynatorzy: Marta Kowalczyk
Prowadzący grup: Marta Kowalczyk
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Zaliczenie
Laboratorium - Zaliczenie

Zajęcia w cyklu "Semestr letni 2018/19" (zakończony)

Okres: 2019-02-25 - 2019-09-30
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Laboratorium, 10 godzin, 16 miejsc więcej informacji
Koordynatorzy: Anna Gołębiewska
Prowadzący grup: Anna Gołębiewska
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Zaliczenie
Laboratorium - Zaliczenie

Zajęcia w cyklu "Semestr letni 2019/20" (zakończony)

Okres: 2020-02-29 - 2020-09-20
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Laboratorium, 10 godzin, 16 miejsc więcej informacji
Koordynatorzy: Marta Kowalczyk
Prowadzący grup: Marta Kowalczyk
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Zaliczenie
Laboratorium - Zaliczenie

Zajęcia w cyklu "Semestr letni 2020/21" (w trakcie)

Okres: 2021-02-22 - 2021-09-20
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Laboratorium, 10 godzin, 16 miejsc więcej informacji
Koordynatorzy: Marta Kowalczyk
Prowadzący grup: Marta Kowalczyk
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Zaliczenie
Laboratorium - Zaliczenie

Zajęcia w cyklu "Semestr letni 2021/22" (jeszcze nie rozpoczęty)

Okres: 2022-02-28 - 2022-09-20
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Laboratorium, 10 godzin, 16 miejsc więcej informacji
Koordynatorzy: (brak danych)
Prowadzący grup: (brak danych)
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Zaliczenie
Laboratorium - Zaliczenie
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Mikołaja Kopernika w Toruniu.