Network Neuroscience
Informacje ogólne
Kod przedmiotu: | 2401-CS-22-NN-s2 |
Kod Erasmus / ISCED: |
(brak danych)
/
(0223) Filozofia i etyka
|
Nazwa przedmiotu: | Network Neuroscience |
Jednostka: | Katedra Kognitywistyki |
Grupy: | |
Punkty ECTS i inne: |
4.00
|
Język prowadzenia: | angielski |
Wymagania wstępne: | (tylko po angielsku) Basic programming in Python |
Rodzaj przedmiotu: | przedmiot obligatoryjny |
Całkowity nakład pracy studenta: | (tylko po angielsku) Contact hours with teacher: - participation in tutorials - 30 hrs - consultations- 5 hrs Self-study hours: - preparation for tutorials - 25 hrs - homework - 30 hrs - preparing final project- 30 hrs Altogether: 120 hrs (4 ECTS) |
Efekty uczenia się - wiedza: | (tylko po angielsku) Student: W1: has systematized and detailed knowledge of fundamental organizational features of brain network – K_W03, K_W14 W2: knows different approaches to obtain connectivity estimates across various spatial scales – K_W01 W3: is familiar with basic graph theory tools that can be used to quantify network organization – K_W04, K_W05 W4: understands the mathematical basics network neuroscience tools together with their biological interpretation – K_W02 |
Efekty uczenia się - umiejętności: | (tylko po angielsku) Student: U1: is able to formulate various network neuroscience research questions – K_U01, K_U06 U2: is capable of selecting the network neuroscience to answer scientific questions- K_U07 U3: has advanced skills in analysis of human network constructed based on functional magnetic resonance imaging (fMRI); K_U04 U4: can apply network neuroscience tools to neuroimaging data and interpret analysis results in biological terms - K_U11 |
Efekty uczenia się - kompetencje społeczne: | (tylko po angielsku) Student: K1: understands the the importance of creative thinking in problem solving – K_K03, K_K14 K2: understands the need for collaboration in scientific research– K_K01 K3: is open to publicly share results of analyses – K_K04, K_K05 K4: is aware of a need of constant learning in academic research – K_K02 K5: identifies the importance of planning and work organization - K_K09 K6: participates in discussions and brainstorms - K_K05 K7: can communicate results of finalized project - K_K12 |
Metody dydaktyczne: | (tylko po angielsku) Observation/demonstration teaching methods: - display Expository teaching methods: - description - discussion - participatory lecture Exploratory teaching methods: - brainstorming - classic problem-solving - experimental - practical - project work Online teaching methods: - content-presentation-oriented methods - cooperation-based methods - evaluative methods - exchange and discussion methods - games and simulations - integrative methods - methods developing reflexive thinking - methods referring to authentic or fictitious situations |
Metody dydaktyczne eksponujące: | - pokaz |
Metody dydaktyczne podające: | - opis |
Metody dydaktyczne poszukujące: | - ćwiczeniowa |
Metody dydaktyczne w kształceniu online: | - metody oparte na współpracy |
Skrócony opis: |
(tylko po angielsku) Network neuroscience is a novel approach to understanding the structure of the brain using tools from network science. The brian connectome (a comprehensive map of neural connections in the brain) can be studied across scales of organization: from molecules and neurons to circuits and systems. During the course students will gain understanding of basic organizational features of brain networks, and learn how to apply network neuroscience tools to neuroimaging data. |
Pełny opis: |
(tylko po angielsku) Network neuroscience is a novel approach to understanding the structure of the brain using tools from network science. The brian connectome (a comprehensive map of neural connections in the brain) can be studied across scales of organization: from molecules and neurons to circuits and systems. During the course students will gain knowledge about the fundamentals of network neuroscience, graph theory and basic features of brain network organization. Students will also learn how to estimate connectivity based on neuroimaging data, apply various network neuroscience tools to neuroimaging data. Specifically, the course and practical tutorials will cover the following topics: 1. Graphs as models of complex systems: introduction to graph theory, concepts of nodes and edges; 2. Imaging brain connectome across scales: microscale, mesoscale and macroscale; 3. Economy of brain network organization: small-world network, hubs, and modularity; 4. Neuroimaging of the human connectome: imaging and denoising techniques, connectivity estimation; 5. Brain parcellations: different approaches of reducing dimensionality of neuroimaging data; 6. Connectivity matrices: directionality, thresholding, and binarization; 7. Connectome visualization: comparing different tools and approaches; 8. Basic measures of node connectivity: node strength, node degree, degree distributions; 9. Detecting brain hubs: centrality measures, methods of identification of hubs; 10. Network modularity: community detection algorithms, multilayer community detection. 11. Applications of network neuroscience: understanding the brain in health and disease. All tutorials will be provided in Python programming language. |
Literatura: |
(tylko po angielsku) Fornito, A., Zalesky, A., & Bullmore, E. (2016). Fundamentals of brain network analysis. Academic Press. Sporns, O. (2010). Networks of the Brain. MIT press. Newman, M. (2018). Networks. Oxford university press. Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature neuroscience, 20(3), 353-364. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature reviews neuroscience, 10(3), 186-198. Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews Neuroscience, 13(5), 336-349. |
Metody i kryteria oceniania: |
(tylko po angielsku) Assessment methods: - activity - homework - final project Assessment criteria: fail- <50 pts (<50 %) satisfactory- 51-60 pts (51-60 %) satisfactory plus- 61-70 pts (61-70 %) good - 71-80 pts (71-80 %) good plus- 81-90 pkt (81-90 %) very good- 91 pts (>90 %) |
Zajęcia w cyklu "Semestr zimowy 2022/23" (zakończony)
Okres: | 2022-10-01 - 2023-02-19 |
Przejdź do planu
PN WT LAB
ŚR CZ PT |
Typ zajęć: |
Laboratorium, 30 godzin
|
|
Koordynatorzy: | Karolina Finc | |
Prowadzący grup: | Karolina Finc | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Zaliczenie na ocenę
Laboratorium - Zaliczenie na ocenę |
Zajęcia w cyklu "Semestr letni 2023/24" (zakończony)
Okres: | 2024-02-20 - 2024-09-30 |
Przejdź do planu
PN WT ŚR LAB
CZ PT |
Typ zajęć: |
Laboratorium, 30 godzin
|
|
Koordynatorzy: | Tomasz Górski | |
Prowadzący grup: | Tomasz Górski | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Zaliczenie na ocenę
Laboratorium - Zaliczenie na ocenę |
Zajęcia w cyklu "Semestr letni 2024/25" (w trakcie)
Okres: | 2025-02-24 - 2025-09-20 |
Przejdź do planu
PN WT LAB
LAB
ŚR CZ PT |
Typ zajęć: |
Laboratorium, 30 godzin
|
|
Koordynatorzy: | Tomasz Górski | |
Prowadzący grup: | Tomasz Górski | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Zaliczenie na ocenę
Laboratorium - Zaliczenie na ocenę |
Właścicielem praw autorskich jest Uniwersytet Mikołaja Kopernika w Toruniu.