Artificial Intelligence in Chemistry: A beginner’s guide towards Data Scientist
Informacje ogólne
Kod przedmiotu: | 0600-EN-AICh |
Kod Erasmus / ISCED: |
13.3
|
Nazwa przedmiotu: | Artificial Intelligence in Chemistry: A beginner’s guide towards Data Scientist |
Jednostka: | Wydział Chemii |
Grupy: |
Przedmioty dla studentów z programu Socrates/Erasmus |
Punkty ECTS i inne: |
4.00
|
Język prowadzenia: | angielski |
Wymagania wstępne: | (tylko po angielsku) General Chemistry General Mathematics No prior knowledge of programming is required |
Całkowity nakład pracy studenta: | (tylko po angielsku) Contact hours with teacher: - participation in lectures: 20 hrs - participation in laboratory: 40 hrs Self-study hours: - preparation for lectures/tutorial/laboratory - 20 hrs - preparation for presentations - 10 hrs - completion of a projects - 20 hrs - reading literature - 10 hrs Altogether: 120 hrs |
Efekty uczenia się - wiedza: | (tylko po angielsku) - Understands the fundamentals of artificial intelligence and its applications in chemistry. - Knows key algorithms and models used in computational chemistry with machine learning, including: linear regression, least square regression, k-nearest neighbours, support vector machines, classification and regression trees and artificial neural networks - Familiar with the ethical implications and challenges of AI in science. |
Efekty uczenia się - umiejętności: | (tylko po angielsku) - Able to handle and visualize different types of datasets common in Chemistry. - Use Python for AI-driven data analysis in chemistry. - Process data for use in machine learning approaches. - Able to apply AI techniques to solve basic chemical problems. - Identify the suitability of different ML approaches to answer chemical questions based on data. - Use standard ML python pipelines to train models. - Assess the quality of the models and their predictive power. - Recognize different applications of ML in Chemistry. |
Efekty uczenia się - kompetencje społeczne: | (tylko po angielsku) - Recognizes the role of AI in advancing chemistry and other sciences. - Demonstrates readiness to explore interdisciplinary approaches integrating AI and chemistry. - Aware of the need for ethical considerations when using AI tools. - Develop interpersonal skills such as communication, cooperation in group and problem-solving abilities |
Metody dydaktyczne: | (tylko po angielsku) - informative lecture - laboratories - discussion - presentation of a paper - project work |
Metody dydaktyczne eksponujące: | - inscenizacja |
Metody dydaktyczne podające: | - opis |
Metody dydaktyczne poszukujące: | - ćwiczeniowa |
Metody dydaktyczne w kształceniu online: | - metody ewaluacyjne |
Skrócony opis: |
(tylko po angielsku) The aim of the course is to expose the students to modern chemical informatics and machine learning (ML) driven approaches for computational modeling and prediction about chemical data, illustrated with applications to research into the discovery of new materials. The course will cover topics such as the basics of machine learning, common algorithms, and their applications in chemistry. |
Pełny opis: |
(tylko po angielsku) The course is designed for general university students with a background in chemistry and mathematics. It consists of 20 hours of lectures covering the basics of AI, its historical context, key algorithms (e.g., neural networks, decision trees), and its role in modern chemistry. The computational laboratory (40 hours) offers hands-on training in AI tools such as Python, TensorFlow, and cheminformatics libraries. Students will engage in projects such as molecular property prediction, chemical reaction modeling, and exploring datasets for drug discovery. Ethical considerations and limitations of AI in chemistry are also discussed. |
Literatura: |
(tylko po angielsku) 1. "Artificial Intelligence in Chemistry: Fundamentals and Applications" by Alán Aspuru-Guzik. 2. "Python for Chemists: An Introduction" by Tim James. 3. Selected scientific articles and online resources provided during the course. |
Metody i kryteria oceniania: |
(tylko po angielsku) Assessment methods: - seminar: 40 pts - Project: 40 pts - class activity: 20 pts Assessment criteria: fail- 0 - 49 pts (< 50 %) satisfactory- 50 - 59 pts (< 60 %) satisfactory plus- 60 - 65 pts (< 65 %) good – 66 - 75 pts (< 75 %) good plus- 76 - 80 pts (< 80 %) very good- 81 - 100 pts (< 100 %) |
Zajęcia w cyklu "Semestr letni 2025/26" (jeszcze nie rozpoczęty)
Okres: | 2026-02-23 - 2026-09-20 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Laboratorium, 40 godzin
Wykład, 20 godzin
|
|
Koordynatorzy: | Saikat Mukherjee | |
Prowadzący grup: | Saikat Mukherjee | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Zaliczenie na ocenę
Laboratorium - Zaliczenie na ocenę Wykład - Zaliczenie na ocenę |
Właścicielem praw autorskich jest Uniwersytet Mikołaja Kopernika w Toruniu.