Uniwersytet Mikołaja Kopernika w Toruniu - Centralny punkt logowania
Strona główna

Quantum optics 2

Informacje ogólne

Kod przedmiotu: 0800-PA-QUANTOPT2
Kod Erasmus / ISCED: (brak danych) / (0533) Fizyka Kod ISCED - Międzynarodowa Standardowa Klasyfikacja Kształcenia (International Standard Classification of Education) została opracowana przez UNESCO.
Nazwa przedmiotu: Quantum optics 2
Jednostka: Wydział Fizyki, Astronomii i Informatyki Stosowanej
Grupy: Modul 1
Przedmioty z angielskim językiem wykładowym
Punkty ECTS i inne: 5.00 Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.
Język prowadzenia: angielski
Wymagania wstępne:

(tylko po angielsku) Basics of quantum mechanics:

1. Schodinger equation

2. algebra of operators (eg. creation, anihilation operators, unitary transformations)

3. tensor calculus

4. second quantization of electromagnetic field

Rodzaj przedmiotu:

przedmiot obligatoryjny

Całkowity nakład pracy studenta:

(tylko po angielsku) Contact hours with teacher:

- participation in lectures - 30 hrs

- participation in tutorials – 30 hrs

- consultations- 5 hrs


Self-study hours:

- preparation for lectures -8 hrs

- writing essays/ papers/ projects- 2 hrs

- reading literature- 10 hrs

- preparation for test- 20 hrs

- preparation for examination- 20 hrs


Altogether: 125 hrs (5 ECTS)

Efekty uczenia się - wiedza:

(tylko po angielsku) W1: Student has advanced knowledge of physics corresponding to modern quantum information

W2: Student knows basic quantum communication protocols

W3: Student knows the methods of quantum states encoding

W4: students has knowledge of quantum description and experimental realization of a parametric down conversion process

(K_W02, K_W03, K_W05)

Efekty uczenia się - umiejętności:

(tylko po angielsku) U1 – The graduate is able to find relevant information in specialist literature including quantum communication and quantum information processing.

U2 – Can present research findings (experimental, theoretical or numerical) in the written or oral form

U3 – Can efficiently communicate both with specialists and non-specialists in terms of the topics relevant to the studied field of Physics or Astronomy

(K_U05, K_U09, K_U10)

Efekty uczenia się - kompetencje społeczne:

(tylko po angielsku) K1 --The graduate knows the level of his or her knowledge and skills and is able to formulate questions adequately.

Metody dydaktyczne podające:

- wykład informacyjny (konwencjonalny)

Metody dydaktyczne poszukujące:

- ćwiczeniowa

Skrócony opis: (tylko po angielsku)

The lecture is devoted to selected topics in quantum optics and information: techniques of single photon generation and implementations of quantum information processing protocols.

Pełny opis: (tylko po angielsku)

Lecture:

1) Introduction: Single photon physics.

2) Quantum information encoding in a single photon polarization state.

3) Quantum communication protocols exploiting polarization states. Practical implementation: quantum key distribution.

4) Single photon spatial mode and the methods of quantum states encoding.

5) Multilevel quantum states -- generation and detection. Majorana representation.

6) Practical implementations of quantum information processing based on spatial mode encoding.

7) Parametric down conversion process -- quantum description and experimental methods.

8) Single photon detection

9) Phase space and Wigner function

Tutorials – calculations on selected problems, such as:

1) simple examples on “quantum world” sizes,

2) Bell states, Pauli matrices, transformations on Bloch sphere,

3) coding information in single-photons' polarization states,

4) quantum key distribution schemes, practical implementations,

5) Helmholtz equation, gaussian beam, propagation in fibers,

6) Jones matrices, optical networks,

7) single photon spatial mode encoding,

8) higher-dimensional entangled states generation methods,

9) nonlinear processes, parametric down conversion, phase matching conditions,

10) “cat” states and Wigner function.

Literatura: (tylko po angielsku)

- M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, 2006.

- D. Bruss, G. Leuchs, Lectures on Quantum Information, Wiley, 2007

- B.E. A. Saleh, M. Teich Fundamentals of Photonics Wiley, 1991

- publications introduced during lectures

Metody i kryteria oceniania: (tylko po angielsku)

ecture: a student has a problem to discuss, a score is based on the quality of the oral presentation; the justification of the resulting mark is justified by the examiner

tutorial: Completion of classes is based on attendance (for a minimum of 10 out of 15 classes) and delivering assesments due to specified date.

For each correctly solved task, delivered on time, 3 points are awarded.

In case of submitting the correct solution to the task with a week or two-week delay, 2 or 1 point, respectively, can be obtained. In case of giving wrong solution, depending on the mistakes made, it is possible to get a hint, to help solve the task at a later date.

To get credit for the tutorials, you must give the correct solutions to all tasks. Depending on the number of tasks to be delivered, the average number of points obtained for a single task is calculated. According to the following scheme, the proper mark is given:

[2.75, 3] excellent (5)

[2.5, 2.75) good + (4.5)

[2.25, 2.5) good (4)

[2.0, 2.25) satisfactory+ (3.5)

[1.5, 2.0) satisfactory (3)

[0, 1.5) unsatisfactory (2)

Praktyki zawodowe: (tylko po angielsku)

Not applicable

Zajęcia w cyklu "Semestr letni 2022/23" (zakończony)

Okres: 2023-02-20 - 2023-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Piotr Kolenderski, Mikołaj Lasota
Prowadzący grup: Piotr Kolenderski, Mikołaj Lasota, Francisca Vieira De Brito
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Ćwiczenia - Zaliczenie na ocenę
Wykład - Egzamin

Zajęcia w cyklu "Semestr letni 2023/24" (w trakcie)

Okres: 2024-02-20 - 2024-09-20
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Piotr Kolenderski
Prowadzący grup: Piotr Kolenderski
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Ćwiczenia - Zaliczenie na ocenę
Wykład - Egzamin

Zajęcia w cyklu "Semestr letni 2024/25" (jeszcze nie rozpoczęty)

Okres: 2025-02-24 - 2025-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Piotr Kolenderski
Prowadzący grup: Piotr Kolenderski, Mikołaj Lasota
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Ćwiczenia - Zaliczenie na ocenę
Wykład - Egzamin
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Mikołaja Kopernika w Toruniu.
ul. Jurija Gagarina 11, 87-100 Toruń tel: +48 56 611-40-10 https://usosweb.umk.pl/ kontakt deklaracja dostępności mapa serwisu USOSweb 7.1.0.0-3 (2024-08-26)