Uniwersytet Mikołaja Kopernika w Toruniu - Centralny punkt logowaniaNie jesteś zalogowany | zaloguj się
katalog przedmiotów - pomoc

Sztuczna inteligencja

Informacje ogólne

Kod przedmiotu: 0800-SZIN Kod Erasmus / ISCED: (brak danych) / (0613) Tworzenie i analiza oprogramowania i aplikacji
Nazwa przedmiotu: Sztuczna inteligencja
Jednostka: Wydział Fizyki, Astronomii i Informatyki Stosowanej
Grupy:
Strona przedmiotu: http://www.is.umk.pl/~duch/Wyklady/AI_plan.html
Punkty ECTS i inne: 6.00
Język prowadzenia: polski
Wymagania wstępne:

Podstawowy kurs programowania

Rodzaj przedmiotu:

przedmiot obowiązkowy

Całkowity nakład pracy studenta:

30 g wykład + 24 g lab + 60 g pracy własnej nad projektami, plus 30 godzin przygotowań do egzaminu

Efekty uczenia się - wiedza:

Student po zakończeniu tych zajęć, pozytywnym zaliczeniu laboratorium i zdaniem egzaminu powinien:


* zdefiniować, opisać, wyliczyć zagadnienia wchodzące w zakres zainteresowań sztucznej inteligencji, jej podstawowych metod i pojęć (informatyka stosowana: K_W08);

* posiadać umiejętność oceny złożoności obliczeniowej różnych procesów szukania (informatyka stosowana: K_W04);

* znać podstawowe metody reprezentacji wiedzy i schematy wnioskowania (informatyka stosowana: K_W08);

* rozumieć problemy i metody używane do analizy języka naturalnego;

* znać zasady i rodzaje systemów ekspertowych i ich możliwe zastosowania;

* posiadać wiedzę na temat projektowania podstawowych algorytmów sztucznej inteligencji, narzędzi do tego służących oraz ich potencjalnych zastosowań w różnych dziedzinach (informatyka stosowana: K_W08).

Efekty uczenia się - umiejętności:

Student po zakończeniu tych zajęć pozytywnym zaliczeniem laboratorium i zdaniem egzaminu powinien:

* znaleźć informacje na temat sztucznej inteligencji korzystając z z literatury, baz danych oraz innych źródeł, ocenić je, zinterpretować, wyciągać wnioski i formułować opinie (K_U04);

* potrafi wykorzystać teoretyczną wiedzę dotyczącą pojęć przydatnych do analizy i rozwiązania problemów stosując odpowiednie metody reprezentacji różnych form wiedzy w zależności od jej formy (K_U02);

* ocenić możliwości i wybrać odpowiednie sposób tworzenia modeli w postaci konstrukcji systemów ekspertowych w zależności od obszaru ich zastosowań (K_U01, K_U02);

* znaleźć odpowiednie narzędzia AI pomocne w rozwiązywaniu naukowych problemów (K_U04).

Efekty uczenia się - kompetencje społeczne:

Student po zakończeniu tych zajęć, pozytywnym zaliczeniu laboratorium i zdaniu egzaminu powinien:

* wykazać się skutecznością w realizacji projektów o charakterze programistyczno-wdrożeniowym w oparciu o poznane metody (K_K03);

* potrafić przekazać informację o osiągnięciach informatyki i różnych aspektach zawodu informatyka w sposób powszechnie zrozumiały oraz śledzić postępy w tej szybko rozwijającej się dziedzinie (K_K04);

* rozumieć znaczenie zdobytej wiedzy i krytycznie ją oceniać, znając jej ograniczenia (K_K06).

Metody dydaktyczne:

Wykład + laboratorium + demonstracje programów + projekty.

Metody dydaktyczne podające:

- wykład informacyjny (konwencjonalny)
- wykład problemowy

Metody dydaktyczne poszukujące:

- laboratoryjna
- projektu

Skrócony opis:

Wstęp do metod sztucznej inteligencji omawia kluczowe zagadnienia, historię i wielkie projekty, podstawowe metody szukania rozwiązań problemów, metody reprezentacji wiedzy, analizę języka naturalnego, systemy doradcze i przykłady ich zastosowań, najbardziej ambitne projekty i zunifikowane teorie poznania, oraz uczenie maszynowe i odkrywanie wiedzy w danych.

Wykład dostępny jest dla każdego studenta z podstawowymi umiejętnościami informatycznymi. Zajęcia na temat data mining i uczenia maszynowego są dobrym uzupełnieniem do tego wykładu.

Pełny opis:

1. Wstęp do metod AI: kluczowe zagadnienia AI; status AI; piąta generacja komputerów i inne wielkie projekty.

2. Szukanie: reprezentacja problemu w przestrzeni stanów; reprezentacja redukcyjna; metody szukania; przykłady programów opartych na szukaniu; szukanie a ludzkie myślenie.

3. Reprezentacja wiedzy: rodzaje wiedzy; reprezentacja stanów; reprezentacja logiczna – logika predykatów, rozmyta, przybliżona; reprezentacja proceduralna; sieci semantyczne; systemy produkcyjne; ramki i skrypty.

4. Rozumienie języka naturalnego: tłumaczenie maszynowe; gramatyki; generacja tekstu; przykłady programów.

5. Systemy doradcze: akwizycja wiedzy; konstrukcja systemów eksperckich; przykłady zastosowań.

6. Modele umysłu i najbardziej ambitne projekty AI: system CyC; zunifikowane teorie poznania i SOAR;

7. Informatyka kognitywna - IBM Watson, architektura poznawcza człowieka.

8. Uczenie maszynowe i odkrywanie wiedzy w danych.

Literatura:

* M. Flasiński, Wstęp do sztucznej inteligencji. WN PWN 2011

* A. Kisielewicz, Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego. Wyd. Nauk-Techniczne 2011

* L. Rutkowski, Metody i techniki sztucznej inteligencji. WN PWN 2012

• Russel & Norvig: AI - the modern approach.

Kursy MOOC

Metody i kryteria oceniania:

Prace zaliczeniowe w ramach laboratorium.

Egzamin będzie w formie pisemnej, na końcu wielu wykładów są przykładowe pytania. Maksymalna liczba uzyskanych punktów =10), oceny:

Punkty 10 9 8 7 6 5 4.5 1-4

Oceny 5 4+ 4 4- 3+ 3 3- 2

Praktyki zawodowe:

Nie są planowane

Zajęcia w cyklu "Semestr zimowy 2017/18" (zakończony)

Okres: 2017-10-01 - 2018-02-25
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Laboratorium, 24 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Włodzisław Duch
Prowadzący grup: Włodzisław Duch, Krzysztof Grąbczewski, Oleksandr Sokolov
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Laboratorium - Zaliczenie na ocenę
Wykład - Egzamin

Zajęcia w cyklu "Semestr letni 2018/19" (zakończony)

Okres: 2019-02-25 - 2019-09-30
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Laboratorium, 24 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Włodzisław Duch
Prowadzący grup: Włodzisław Duch, Tomasz Piotrowski, Oleksandr Sokolov
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Laboratorium - Zaliczenie na ocenę
Wykład - Egzamin

Zajęcia w cyklu "Semestr letni 2019/20" (zakończony)

Okres: 2020-02-29 - 2020-09-20
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Laboratorium, 24 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Włodzisław Duch
Prowadzący grup: Włodzisław Duch, Tomasz Piotrowski, Oleksandr Sokolov
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Laboratorium - Zaliczenie na ocenę
Wykład - Egzamin

Zajęcia w cyklu "Semestr letni 2020/21" (zakończony)

Okres: 2021-02-22 - 2021-09-20
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Laboratorium, 24 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Włodzisław Duch
Prowadzący grup: Włodzisław Duch, Tomasz Piotrowski, Oleksandr Sokolov
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Laboratorium - Zaliczenie na ocenę
Wykład - Egzamin

Zajęcia w cyklu "Semestr letni 2021/22" (jeszcze nie rozpoczęty)

Okres: 2022-02-21 - 2022-09-30
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Laboratorium, 24 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Włodzisław Duch
Prowadzący grup: Włodzisław Duch, Tomasz Piotrowski, Oleksandr Sokolov
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Laboratorium - Zaliczenie na ocenę
Wykład - Egzamin
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Mikołaja Kopernika w Toruniu.