Uniwersytet Mikołaja Kopernika w Toruniu - Centralny punkt logowania
Strona główna

Art of Geometry-Geometry of Art

Informacje ogólne

Kod przedmiotu: 1000-OG-EN-ART-GEO
Kod Erasmus / ISCED: (brak danych) / (0541) Matematyka Kod ISCED - Międzynarodowa Standardowa Klasyfikacja Kształcenia (International Standard Classification of Education) została opracowana przez UNESCO.
Nazwa przedmiotu: Art of Geometry-Geometry of Art
Jednostka: Wydział Matematyki i Informatyki
Grupy: Przedmioty ogólnouniwersyteckie
Strona przedmiotu: https://www.instagram.com/geometryofart/
Punkty ECTS i inne: 6.00 Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.
Język prowadzenia: angielski
Wymagania wstępne:

(tylko po angielsku) Basic IT skills and school geometry.

Całkowity nakład pracy studenta:

(tylko po angielsku) 60 h - participation in laboratory classes.

60 h - preparation for laboratory classes: creating geometric constructions, studying recommended literature, attending office hours.

30 h – preparation of final project and its presentation .

Altogether: 150 h (6 ECTS)


Efekty uczenia się - wiedza:

(tylko po angielsku) Student:

W1. Knows basic definitions and facts in elementary plane geometry (angles in a circle, constructability of angles and regular polygons, golden ratio and its properties, plane isometries).

W2. Knows basic geometric constructions with the use of compass and straightedge.

W3. Knows capabilities of computer program in creating complex geometric patterns and ornaments.

W4. Knows different approaches to design geometric patterns derived from art.


Efekty uczenia się - umiejętności:

(tylko po angielsku) Student:

U1. Constructs basic geometric objects, creates animations and 3D-print files.

U2. Applies known theorems from elementary geometry to establish the correctness of the constructions used.

U3. Determines which geometric transformations can be used to create intricate patterns and ornaments.

U4. Is able to create complex geometric designs coming from the world of art with the help of the computer program.

U5. Chooses appropriate method to construct given pattern and transparently exhibits consecutive phases of its creation.


Efekty uczenia się - kompetencje społeczne:

(tylko po angielsku) Student:

K1. Transfers his knowledge and thoughts to others in an understandable way. Correctly understands the wording of questions and problems, correctly uses professional terminology.

K2. Understands the need for continuous improvement.

K3. Appreciates the diversity and beauty of art from different parts of the world.


Metody dydaktyczne:

(tylko po angielsku) Demonstration teaching methods:

- display

Expository teaching methods:

- informative (conventional) lecture

Exploratory teaching methods:

- practical

- classic problem-solving

- project work

- discussion


Metody dydaktyczne eksponujące:

- pokaz

Metody dydaktyczne podające:

- wykład konwersatoryjny

Metody dydaktyczne poszukujące:

- klasyczna metoda problemowa
- laboratoryjna
- referatu

Skrócony opis: (tylko po angielsku)

The aim of the course is to prepare students to apply geometric constructions in creating intricate patterns derived from architecture and art with the use of the computer program. For this purpose, fundamental geometric constructions, together with some elementary facts, as well as the basics of Geogebra software, will be presented. During the exercise classes, students will prepare projects inspired by concrete geometric patterns coming from the world of Islamic, Celtic or Gothic art and others. Sample projects that will be created as part of the classes can be found at instagram profile geometryofart: https://www.instagram.com/geometryofart/

Pełny opis: (tylko po angielsku)

The content of the course can be divided into three fields: basic geometry facts, fundamentals of using Geogebra, constructing patterns from the world of art and architecture based on different methods. The following topics will be intertwined throughout the course:

1. Examples of applications of geometry in art.

2. Basic geometric constructions in Geogebra.

3. Creating and managing tools in Geogebra.

4. Arithmetic of segments, constructability of angles, proportions and the golden ratio.

5. Exact and approximate constructions of regular polygons.

6. Isometries of the plane and their application to create geometric patterns.

7. Ornaments based on triangular, square circular and other grids.

8. Medallions, rosettes and other designs from Islamic mosques.

9. Examples of Coptic, Mughal, Chinese ornament.

10. Different Islamic patterns with a regular decagon based on one contour.

11. Filling patterns based on Persian ornaments. Persian ornaments with bands.

12. Alternative tessellations of patterns with a regular decagon.

13. Cosmatesque and guilloches, ornaments with circles, elements of programming in Geogebra.

14. Elements of Gothic ornament. Gothic rosettes.

15. Celtic braids and rosettes. Ribbon and interlacing patterns.

16. Tessellations, Penrose tessellations, Mr. Ammann's napkin.

17. Sangaku - illustrations for mathematical problems from Japanese temples. Use of inversion.

Literatura: (tylko po angielsku)

Basic literature:

1. H. Fukagawa, T. Rothman, Sacred Mathematics: Japanese Temple Geometry, Princeton University Press, 2008.

2. R. Hartshorne, Geometry : Euclid and Beyond, New York, Springer, 2000.

3. M. Majewski, Islamic Geometric Ornaments in Istanbul, MATHPAD 2010 Post-conference Materials, Toruń, 2011.

4 M. Majewski, Practical Geometric Pattern Design -Decagonal Patterns in Persian Traditional Art, Independently published, 2021.

5. M. Majewski, Practical Geometric Pattern Design - Geometric Pattern in Islamic Arts, Wydawnictwo Aksjomat, 2019.

6. M. Majewski, Practical Geometric Pattern Design - Lessons from the Topkapi Scroll, Independently published, 2021.

7. M. Majewski, Understanding Geometric Pattern and its Geometry. Part 1-8, series of papers published mainly in The Electronic Journal of Mathematics and Technology.

8. M. Majewski, Ribbon Patterns with Geometry Software, The Electronic Journal of Mathematics and Technology , 2018, 12(3):322-342.

Supplementary literature:

1. H. Conway, H. Burgel, C. Goodman-Strauss, The Symmetries of Things, Wellesley, A K Peters / CRC Press, 2008

2. H. S. M. Coxeter, Introduction to Geometry, Wiley; 2nd edition, 1991.

3. C. Horne, Geometric Symmetry in Patterns and Tilings, Cambridge, England: Woodhead Publishing Ltd., 2000.

4. O. Jones, The Grammar of Ornament : A Visual Reference of Form and Colour in Architecture and the Decorative Arts - The complete and unabridged full-color edition, Princeton, NJ : Princeton University Press, 2016.

5. M. Majewski, O geometrii i sztuce: między Wschodem i Zachodem, Wydawnictwo Aksjomat, Toruń, 2012.

6. M. Majewski, O geometrii i sztuce: sztuka konstrukcji geometrycznych, Wydawnictwo Aksjomat, Toruń, 2013.

7. M. Majewski, O geometrii i sztuce: gereh i geometria w sztuce islamu, Wydawnictwo Aksjomat, Toruń, 2017.

Metody i kryteria oceniania: (tylko po angielsku)

Passing the subject with a grade based on the preparation of a graphic designs in a computer program and its presentation.

Praktyki zawodowe: (tylko po angielsku)

not applicable

Zajęcia w cyklu "Semestr zimowy 2023/24" (zakończony)

Okres: 2023-10-01 - 2024-02-19
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Laboratorium, 60 godzin, 15 miejsc więcej informacji
Koordynatorzy: Łukasz Rzepnicki
Prowadzący grup: Łukasz Rzepnicki
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Zaliczenie
Laboratorium - Zaliczenie

Zajęcia w cyklu "Semestr zimowy 2024/25" (jeszcze nie rozpoczęty)

Okres: 2024-10-01 - 2025-02-16
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Laboratorium, 60 godzin, 15 miejsc więcej informacji
Koordynatorzy: (brak danych)
Prowadzący grup: Łukasz Rzepnicki
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Zaliczenie
Laboratorium - Zaliczenie
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Mikołaja Kopernika w Toruniu.
ul. Jurija Gagarina 11, 87-100 Toruń tel: +48 56 611-40-10 https://usosweb.umk.pl/ kontakt deklaracja dostępności USOSweb 7.0.3.0-1 (2024-04-02)