Introduction to non-classical logics
Informacje ogólne
Kod przedmiotu: | 2400-OG-EN-ICL |
Kod Erasmus / ISCED: |
(brak danych)
/
(0238) Interdyscyplinarne programy i kwalifikacje związane z językami
|
Nazwa przedmiotu: | Introduction to non-classical logics |
Jednostka: | Wydział Filozofii i Nauk Społecznych |
Grupy: |
Zajęcia ogólnouniwersyteckie w j. obcym na WFiNS |
Punkty ECTS i inne: |
3.00
|
Język prowadzenia: | angielski |
Wymagania wstępne: | (tylko po angielsku) none |
Całkowity nakład pracy studenta: | (tylko po angielsku) Contact hours with teacher: - participation in lectures – 30 hrs - consultations – 10 hrs Self-study hours: - preparation for lectures and reading literature – 10 hrs - preparation for test/examination – 10 hrs Altogether: 60 hrs (2 ECTS) |
Efekty uczenia się - wiedza: | (tylko po angielsku) Student W1: has systematized knowledge of the tools and notions used in logic W2: is familiar with theorems and laws of selected fields of the contemporary logic W3: knows the concept of the proof used in logic and can prove selected metalogical theorems |
Efekty uczenia się - umiejętności: | (tylko po angielsku) Student U1: is able to examine reasonings in terms of their correctness on the basis of the first order quantifier logic and normal modal logics U2: is capable to understand the formal notation of statements given in natural language and is able to use this notation U3: has advanced skills in constructing proofs on the basis of selected formal systems |
Efekty uczenia się - kompetencje społeczne: | (tylko po angielsku) Student K1: understands the importance of consistency of statements and of the correctness of conclusions both in social life and in conducting scientific research K2: is ready to use the acquired knowledge to analyse the problems that require logically correct inferences |
Metody dydaktyczne: | (tylko po angielsku) Expository teaching methods: - informative (conventional) lecture - problem-based lecture The lecture will be held on-site (only if necessary or the general situation would be extraordinary - via Microsoft Teams service, but within the University regulations). |
Metody dydaktyczne podające: | - wykład informacyjny (konwencjonalny) |
Skrócony opis: |
(tylko po angielsku) The course includes elements of symbolic logic, including introductory presentation of set theory but focusing on proof theory, the semantics of chosen systems, such as first-order classical logic, selected non-classical logics such as modal logics, many-valued logics, and paraconsistent logics. |
Pełny opis: |
(tylko po angielsku) The course includes elements of modern symbolic logic, including introductory presentation of set theory, first-order classical logic, proof theory, the semantics of chosen systems and basic meta-logical results. The study of various non-classical logics such as modal logic, many-valued logic, paraconsistent logic will be given. Next to intuitions that led to a given system, the syntactical characterization will be proposed. From the proof-theoretical point of view, the syntactic characterization can have a form of various approaches, such as natural deduction, sequent calculus, tableau calculi, axiomatic systems, to mention only the most influential nowadays. For particular logics, the semantics will be also presented, aiming at the adequacy result for these logics. As an outcome, the completeness theorem for the selected logics will be formulated. Also, sketches of proofs of these theorems will be given. Considering non-classical logic, one can try to refer not only to the real world but also to some possible worlds. They can be interpreted in various ways: as ontological possibilities, moments of time, or states of affairs. In every case, specific interpretations can play the role of characterization of the semantics of a given system. So-called Kripke semantics can be used to express all these interpretations formally. In particular, this type of semantics can be applied to describe some classes of modal logics, such as normal and regular logics. On the other hand, examples of selected modal logics will be given together with the adequate formulation in terms of specific conditions imposed on Kripke structures (the so-called frames). Taking into account that even in everyday situations, we can observe limitations of two-valued classical semantics, it is natural to try to extend the classical view. First, many-valued logics can be considered in such a context. They - in a sense - are similar to classical propositional logic. But they differ because they do not restrict the number of truth values to only two: they allow for a larger amount of truth degrees. In their case, the natural semantics is expressed with the help of logical matrices. Another way to obtain the non-classical approach is to change semantics so that some classical theses are no longer generally valid. One of the types of logics obtained in this way is the class of paraconsistent logics, for which - most often - Duns Scotus law is in a way suspended. Usually, the result is received by a reinterpretation of negation and also of the other connectives. |
Literatura: |
(tylko po angielsku) G. E. Hughes and M. J. Cresswell, A New Introduction to Modal Logic, Routledge, London and New York, I998 Graham Priest, An Introduction to Non-Classical Logic. From If to Is. Cambridge University Press, 2008 Geoffrey Hunter Metalogic, An Introduction to the Metatheory of Standard First Order Logic, Palgrave Macmillan, 1971 Elliott Mendelson, Introduction to Mathematical Logic, Taylor & Francis Group, Boca Raton – London – New York, 2015 |
Metody i kryteria oceniania: |
(tylko po angielsku) Assessment methods: - written examination – W1, W2, W3, U1, U2, U3 Assessment criteria: - attendance – one absence is accepted. - written exam will be held onsite (NOT in online mode) and include open-ended questions. The resulting grade is given as follows: fail - below 50% satisfactory - [50%, 60%) satisfactory plus - [60%, 70%) good – [70%, 80%) good plus - [80%, 90%] very good - more than 90% |
Praktyki zawodowe: |
(tylko po angielsku) n/a |
Zajęcia w cyklu "Semestr letni 2021/22" (zakończony)
Okres: | 2022-02-21 - 2022-09-30 |
Przejdź do planu
PN WYK
WT ŚR CZ PT |
Typ zajęć: |
Wykład, 30 godzin
|
|
Koordynatorzy: | Tomasz Jarmużek | |
Prowadzący grup: | Tomasz Jarmużek | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Egzamin
Wykład - Egzamin |
Zajęcia w cyklu "Semestr letni 2022/23" (zakończony)
Okres: | 2023-02-20 - 2023-09-30 |
Przejdź do planu
PN WT ŚR CZ PT WYK
|
Typ zajęć: |
Wykład, 30 godzin
|
|
Koordynatorzy: | Marek Nasieniewski | |
Prowadzący grup: | Marek Nasieniewski | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Egzamin
Wykład - Egzamin |
Zajęcia w cyklu "Semestr letni 2023/24" (zakończony)
Okres: | 2024-02-20 - 2024-09-30 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Wykład, 30 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | (brak danych) | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Egzamin
Wykład - Egzamin |
Właścicielem praw autorskich jest Uniwersytet Mikołaja Kopernika w Toruniu.