From cosmochemistry to novel inorganic reactants and materials
General data
Course ID: | 0600-S1-SP/W-KNRM |
Erasmus code / ISCED: |
13.3
|
Course title: | From cosmochemistry to novel inorganic reactants and materials |
Name in Polish: | Od kosmochemii do nowych reagentów i materiałów nieorganicznych |
Organizational unit: | Faculty of Chemistry |
Course groups: |
(in Polish) Przedmioty specjalnościowe - stacjonarne studia pierwszego stopnia (S1) (in Polish) Stacjonarne studia pierwszego stopnia - Chemia - Semestr 6 |
ECTS credit allocation (and other scores): |
0 OR
5.00
(depends on study program)
|
Language: | Polish |
Prerequisites: | Knowledge of general chemistry, physics, and mathematics. |
Total student workload: | a. 30h - lecture, i.e. 30 contact hours; b. 45h - laboratory, i.e. 45h contact hours; c. 15h - exercises, i.e. 15 contact hours; d. 30h - individual work, e. 30h - time required for preparation in the assessment process. The total student workload is 150 h (6 ECTS). |
Learning outcomes - knowledge: | W1: Describes the basic physical and chemical phenomena occurring during the life of stars - K_W01; W2: Characterizes the properties of elements and selected inorganic compounds used in today's world (fertilizers, detergents) - K_W09; W3: He knows the basic concepts in the field of chemistry of inorganic polymers and in the field of selected problems of solid chemistry (eg. crystal lattice defects) - K_W10. |
Learning outcomes - skills: | U1: Can use chemical nomenclature and concepts in the field of cosmochemistry and chemistry of modern materials - K_U01; U2: Can correlate the properties of elements and their chemical compounds with the position in the periodic table and relate the chemical properties of substances with their modern applications - K_U02; U3: Can find relations between the behavior of materials during formation and use and physicochemical properties, structure, and type of structure - K_U13. |
Learning outcomes - social competencies: | K1: Works independently and effectively with a large amount of information, sees relationships between phenomena, and correctly draws conclusions using the principles of logic (analytical thinking) - K_K01; K2: Is focused on the continuous acquisition of new knowledge, skills, and experiences; sees the need for continuous improvement and improvement of professional competencies; knows the limitations of his own knowledge and understands the need for further education (striving for development) - K_K05; K3: Knows and observes the rules and standards applicable to a chemist, including ethical standards; understands the social role of the profession; understands and appreciates the importance of intellectual honesty, care for the health and the natural environment in the activities of their own and others (professionalism and ethics) - K_K08. |
Teaching methods: | Lecture and exercises: Lecture combined with discussion and elements of auditorium exercises, independent work (homework and their discussion). Lab: Performing planned laboratory exercises, discussion with pairs during the performance of a given task, and independent work. |
Observation/demonstration teaching methods: | - display |
Expository teaching methods: | - informative (conventional) lecture |
Exploratory teaching methods: | - case study |
Short description: |
The subject of the course are: cosmochemistry, issues in the field of "green chemistry", inorganic compounds in contemporary materials and nanomaterials, and more important inorganic compounds found in households and agriculture. The aim of the course is to show the practical aspects of inorganic chemistry against the background of the necessary theoretical foundations. The laboratory enables the student to learn the technique of synthesis, separation, and analysis of inorganic compounds of practical importance. Space chemistry classes are conducted at the Astronomical Observatory in Piwnice. |
Full description: |
The topics of the lectures have been divided into several main topics: 1. Chemistry in space This topic discusses the current state of knowledge about the origins of the Universe and the formation of the first elementary particles and atomic nuclei (the Big Bang theory). Then the first stages of the universe's development (inflation, the so-called dark ages) and the "birth" of the first stars are discussed. The following hours of the lecture present the reactions taking place in the stars ("combustion" of hydrogen (also the CNO cycle), helium, etc.), describing the formation of increasingly heavier elements and explaining the anomalies related to their distribution in the universe (a small amount of Li, Be, B, relatively a lot of Fe, more even kernels, etc.). At the same time, the basic issues of cosmochemistry and the structure of atoms are discussed (the structure of matter known to us, the stability of nuclei, and ways of achieving it). The lecture also presents the processes taking place in supernovae and other places of the Universe, which enable the formation of heavier atomic nuclei. The final section, devoted to cosmochemistry, discusses the evolution of stars, including the Sun. 2. Network defects This part of the lecture presents the types of lattice defects (point, line, plane, and others) and explains why they occur at all, pointing to the effects that these defects cause. In this context, we talk about the phenomenon of semiconductivity, non-stoichiometric compounds, interstitial compounds and their properties, carbon steels, and mechanisms of oxidation of metal surfaces, including widespread corrosion. 3. Nanomaterials and nanotechnologies During the lecture, the terms "nanomaterial" and "nanotechnology" are defined. The methods of producing nanomaterials and methods for their characterization are discussed. The lecture also presents selected examples of bioinorganic nanomaterials (bionanocomposites, combinations of nanomaterials with DNA (biomimetics)). 4. Artificial fertilizers This part of the lecture presents the basic nutrients of plants and microorganisms. After the introduction to the topic, the methods of supplying plants with nitrogen, potassium, phosphorus, and sulfur are discussed. Issues in the field of chemical technology are discussed, and then issues related to the difficulties in nitrogen fixation, methods of obtaining potassium salts, and separating them from sodium salts are presented. Finally, the process of superphosphate production is discussed, and the procedure of how to calculate the amounts of nitrogen, phosphorus, and potassium based on indications generally used on commercial fertilizers (NPK). 5. Homogeneous and heterogeneous catalysis The last part of the lecture presents the basic information on chemical catalysis, paying attention to the most important concepts such as process energy, catalytic cycle, catalyst efficiency and its lifetime, and catalyst selectivity. In the further part of the lecture, the characteristics of homogeneous and heterogeneous catalysts are discussed, followed by a presentation of selected catalytic reactions. The homogeneous processes include hydrogenation, hydroformylation, carbonylation, the Wacker process, metathesis, coupling, and asymmetric oxidation, with the focus primarily on the inorganic catalysts used in these reactions. After discussing the above-mentioned examples, the lecture focuses on heterogeneous catalysts, both homogeneous (e.g. zeolites) and multiphase (especially based on silica and alumina). Important concepts related to this type of catalyst are discussed (surface area, porosity, surface acidity, alkalinity centers, metal surface centers, chemisorption and desorption, and surface migration). The following is a presentation of exemplary reactions with the participation of these catalysts, including the hydrogenation process, ammonia synthesis, sulfur dioxide oxidation, transformation of organic compounds into zeolites, Fischer-Tropsch synthesis, or polymerization of alkenes. Finally, there is a presentation of new directions in the development of heterogeneous catalysis (hybrid catalysis, "tethered" catalysts, two-phase systems). Lab Exercise topics: 1. Clock reaction with bromate(V) ion and manganese(III) ions. Formation [Mn(H2P2O7)3]3–; 2. Thermochromism and solvatochromism of coordination compounds; 3. Corrosion of steel and protection against corrosion; by covering metals with protective layers; 4. Aqueous solutions of oxygen; 5. Water hardness; 6. Synthesis and study on properties of selected inorganic dyes; 7. Departure to Piwnice. Classes Discussion of selected topics discussed during the lecture. Methodology and instruments of cosmochemical research (classes at the Astronomical Observatory in Piwnice). |
Bibliography: |
1. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd Ed., Elsevier Butterworth-Heinemann 2006; 2. P. Atkins, T. Overton, et al., Shriver&Atkins Inorganic Chemistry, 5th Ed. Oxford University Press 2010; 3. C.E. Housecroft, A.G. Sharpe, Inorganic Chemistry, 2nd Ed., Person Education Limited 2005; 4. T.W. Swaddle, Inorganic Chemistry, Academic Press 1997. 5. Papers from the Journal of Chemical Education, Coordination Chemistry Reviews, etc. |
Learning outcomes: |
Student has a knowledge on contemporary practical applications of inorganic compounds and gains some experience useful for work in industrial laboratories. |
Assessment methods and assessment criteria: |
Written exam (60%), laboratory (25%), tutorials (15%). The method of verification of learning outcomes: Exam: W3 Colloquium: W1, W2, U1, U2, U3 Laboratory report: K1, K2, K3 |
Internships: |
None |
Classes in period "Summer semester 2024/25" (in progress)
Time span: | 2025-02-24 - 2025-09-20 |
Go to timetable
MO TU W LAB
WYK
TH FR LAB
|
Type of class: |
Laboratory, 30 hours
Lecture, 30 hours
|
|
Coordinators: | Adrian Topolski | |
Group instructors: | Adrian Topolski, Joanna Wiśniewska | |
Students list: | (inaccessible to you) | |
Credit: |
Course -
Examination
Laboratory - Grading Lecture - Examination |
|
Short description: |
(in Polish) Przedmiotem kursu są zagadnienia z zakresu „zielonej chemii”, związków nieorganicznych we współczesnych materiałach i nanomateriałach oraz ważniejsze związki nieorganiczne spotykane w gospodarstwie domowym, rolnictwie i wojsku. Dodatkowo wprowadzono zagadnienia ze współczesnej kosmochemii. Celem przedmiotu jest ukazanie praktycznych aspektów chemii nieorganicznej na tle niezbędnych podstaw teoretycznych. Zajęcia laboratoryjne umożliwiają studentowi zapoznanie się z techniką syntezy, separacji i analizy związków nieorganicznych o znaczeniu praktycznym. Zajęcia z tematyki chemii kosmosu prowadzone są w Centrum Astronomii UMK. |
|
Full description: |
(in Polish) Wykład Pierwiastki i związki nieorganiczne, jako katalizatory i reagenty „zielonej chemii”. Utlenianie ditlenem, nadtlenkiem wodoru i nadtlenkami, zastępowanie chlorowych utleniaczy czynnikami przyjaznymi środowisku, fotokatalityczne właściwości TiO2. Związki nieorganiczne we współczesnych materiałach i nanomateriałach, ich zastosowanie: defekty sieciowe, związki niestechiometryczne, elektrolity stałe; synteza materiałów oraz ich właściwości magnetyczne, optyczne i elektryczne; rodzaje materiałów: ceramika i szkło, polimery nieorganiczne, włókna z boru, węgla, Al2O3, SiC oraz kamienie szlachetne; nanomateriały i nanotechnologie. Związki nieorganiczne w gospodarstwie domowym, rolnictwie i wojsku. Chemia w kosmosie. Laboratorium Synteza, badanie właściwości wybranych katalizatorów nieorganicznych, nanomateriałów; badanie szybkości rozkładu katalitycznego rozkładu nadtlenku wodoru; otrzymywanie i badanie właściwości konserwantów: (fosforany(V), azotany(III), siarczany(IV)); kinetyka katalizowanych i niekatalizowanych reakcji redoksowych z udziałem: ditlenu, nadtlenku wodoru, ceru(IV) i manganu(III). Ćwiczenia Dyskusja wybranych tematów omawianych na wykładzie. Metodyka i instrumentarium badań kosmochemicznych (zajęcia w Centrum Astronomii UMK w Piwnicach). |
|
Bibliography: |
(in Polish) 1. P. Atkins, T. Overton i in., Shriver&Atkins Inorganic Chemistry, 5 wyd. Oxford University Press 2010; 2. C.E. Housecroft, A.G. Sharpe, „Inorganic Chemistry”, 2 wyd., Person Education Limited 2005; 3. T.W. Swaddle, „Inorganic Chemistry”, Academic Press 1997. |
Classes in period "Summer semester 2025/26" (future)
Time span: | 2026-02-23 - 2026-09-20 |
Go to timetable
MO TU W TH FR |
Type of class: |
Laboratory, 30 hours
Lecture, 30 hours
|
|
Coordinators: | Adrian Topolski | |
Group instructors: | Adrian Topolski, Joanna Wiśniewska | |
Students list: | (inaccessible to you) | |
Credit: |
Course -
Examination
Laboratory - Grading Lecture - Examination |
|
Short description: |
(in Polish) Przedmiotem kursu są zagadnienia z zakresu „zielonej chemii”, związków nieorganicznych we współczesnych materiałach i nanomateriałach oraz ważniejsze związki nieorganiczne spotykane w gospodarstwie domowym, rolnictwie i wojsku. Dodatkowo wprowadzono zagadnienia ze współczesnej kosmochemii. Celem przedmiotu jest ukazanie praktycznych aspektów chemii nieorganicznej na tle niezbędnych podstaw teoretycznych. Zajęcia laboratoryjne umożliwiają studentowi zapoznanie się z techniką syntezy, separacji i analizy związków nieorganicznych o znaczeniu praktycznym. Zajęcia z tematyki chemii kosmosu prowadzone są w Centrum Astronomii UMK. |
|
Full description: |
(in Polish) Wykład Pierwiastki i związki nieorganiczne, jako katalizatory i reagenty „zielonej chemii”. Utlenianie ditlenem, nadtlenkiem wodoru i nadtlenkami, zastępowanie chlorowych utleniaczy czynnikami przyjaznymi środowisku, fotokatalityczne właściwości TiO2. Związki nieorganiczne we współczesnych materiałach i nanomateriałach, ich zastosowanie: defekty sieciowe, związki niestechiometryczne, elektrolity stałe; synteza materiałów oraz ich właściwości magnetyczne, optyczne i elektryczne; rodzaje materiałów: ceramika i szkło, polimery nieorganiczne, włókna z boru, węgla, Al2O3, SiC oraz kamienie szlachetne; nanomateriały i nanotechnologie. Związki nieorganiczne w gospodarstwie domowym, rolnictwie i wojsku. Chemia w kosmosie. Laboratorium Synteza, badanie właściwości wybranych katalizatorów nieorganicznych, nanomateriałów; badanie szybkości rozkładu katalitycznego rozkładu nadtlenku wodoru; otrzymywanie i badanie właściwości konserwantów: (fosforany(V), azotany(III), siarczany(IV)); kinetyka katalizowanych i niekatalizowanych reakcji redoksowych z udziałem: ditlenu, nadtlenku wodoru, ceru(IV) i manganu(III). Ćwiczenia Dyskusja wybranych tematów omawianych na wykładzie. Metodyka i instrumentarium badań kosmochemicznych (zajęcia w Centrum Astronomii UMK w Piwnicach). |
|
Bibliography: |
(in Polish) 1. P. Atkins, T. Overton i in., Shriver&Atkins Inorganic Chemistry, 5 wyd. Oxford University Press 2010; 2. C.E. Housecroft, A.G. Sharpe, „Inorganic Chemistry”, 2 wyd., Person Education Limited 2005; 3. T.W. Swaddle, „Inorganic Chemistry”, Academic Press 1997. |
Copyright by Nicolaus Copernicus University in Torun.